Commit cafa53d5 by Turnhout, M.C. van

 ... @@ -169,7 +169,7 @@ These Euler angles follow the \gibbon-convention (see \gib{euler2DCM.m}): $\alph ... @@ -169,7 +169,7 @@ These Euler angles follow the \gibbon-convention (see \gib{euler2DCM.m}):$\alph \mat{R}_{\alpha\beta\gamma} = \mat{R}_\alpha\cdot\mat{R}_\beta \cdot \mat{R}_\gamma \mat{R}_{\alpha\beta\gamma} = \mat{R}_\alpha\cdot\mat{R}_\beta \cdot \mat{R}_\gamma This kind of angle multiplication is not commutative. Abaqus uses a different definition for Euler angles. These three Euler angles from \gibbon{} can not be directly used in Abaqus. It will wreak havoc. This kind of angle multiplication is not commutative. Abaqus uses a different definition for Euler angles. These three Euler angles from \warning\gibbon{} can not be directly used in Abaqus. It will wreak havoc. The $3\times 3$ matrix (centres of mass, Euler angles) is written to \texttt{Bone\_preload\_loading.txt\index{Bone\_preload\_loading.txt@\texttt{Bone\_preload\_loading.txt}}} or \texttt{Bone\_preload\_postload.txt\index{Bone\_preload\_postload.txt@\texttt{Bone\_preload\_postload.txt}}}, depending on the case, in \basilhome\texttt{//}. To map the tibia movements for \texttt{ = 140611} and \texttt{ = 140613} call: The $3\times 3$ matrix (centres of mass, Euler angles) is written to \texttt{Bone\_preload\_loading.txt\index{Bone\_preload\_loading.txt@\texttt{Bone\_preload\_loading.txt}}} or \texttt{Bone\_preload\_postload.txt\index{Bone\_preload\_postload.txt@\texttt{Bone\_preload\_postload.txt}}}, depending on the case, in \basilhome\texttt{//}. To map the tibia movements for \texttt{ = 140611} and \texttt{ = 140613} call: \begin{lstlisting}[numbers=none,language=basillab] \begin{lstlisting}[numbers=none,language=basillab] ... ...