Commit 9e029e5a by Turnhout, M.C. van

### fix some typesetting

parent 89823b9d
 ... ... @@ -303,10 +303,10 @@ The output arguments \kwo{Me} and \kwo{Ce} are empty: these are not used, but th The matrices $\mat{B}$ and $\mat{H}$ are calculated with: \begin{align} \mat{B} &= \begin{bmatrix} \pderiv{N_1}{x}& 0& \pderiv{N_2}{x} &0 & \dots & \pderiv{N_n}{x} &0 \\[1em] 0 & \pderiv{N_1}{y}& 0& \pderiv{N_2}{y} &0 & \dots & \pderiv{N_n}{y} \\[1em] 0 & \pderiv{N_1}{y}& 0& \pderiv{N_2}{y} & \dots &0 & \pderiv{N_n}{y} \\[1em] \pderiv{N_1}{y}& \pderiv{N_1}{x}& \pderiv{N_2}{y}& \pderiv{N_2}{x} & \dots & \pderiv{N_n}{y}& \pderiv{N_n}{x}\\[1em] 0 & 0 & 0 & 0 & \dots & 0 & 0\end{bmatrix}\label{matb1}\quad \text{(plane strain, plane stress)}\\[1em] \mat{B} &= \begin{bmatrix} \pderiv{N_1}{x}& 0& \pderiv{N_2}{x} &0 & \dots & \pderiv{N_n}{x} &0 \\[1em] 0 & \pderiv{N_1}{y}& 0& \pderiv{N_2}{y} &0 & \dots & \pderiv{N_n}{y} \\[1em] 0 & \pderiv{N_1}{y}& 0& \pderiv{N_2}{y} & \dots &0& \pderiv{N_n}{y} \\[1em] \pderiv{N_1}{y}& \pderiv{N_1}{x}& \pderiv{N_2}{y}& \pderiv{N_2}{x} & \dots & \pderiv{N_n}{y}& \pderiv{N_n}{x}\\[1em] \frac{N_1}{x} & 0 & \frac{N_2}{x} & 0 & \dots & \frac{N_n}{x} & 0\end{bmatrix}\quad \text{(axi-symmetric)}\label{matb2} \end{align} and ... ... @@ -319,7 +319,6 @@ The matrices $\mat{B}$ and $\mat{H}$ are calculated with: \begin{itemize} \item the theory behind this element is described in chapter 18 of the book Biomechanics: Concepts and Computation' \cite{Oomens2018}. \item the plane strain and plane stress $\mat{H}$ matrices are the subject of exercise 18.1 in the book Biomechanics: Concepts and Computation' \cite{Oomens2018}. \item \item each node has two degrees of freedom. \item this element is used in \kwc{demo\_2ds\_axi\_cyl.m}, \kwc{demo\_2ds\_bar\_bending.m} and \\\kwc{demo\_2ds\_bar\_shear.m}. \end{itemize} ... ...
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!