Commit 8c269149 by Turnhout, M.C. van

### ani tables, eqs

parent c08e40e7
 R_\varepsilon^\text{l}(\sigma_x = 0.015\,\text{MPa}) = 9.53\cdot 10^{-1} -9.04\cdot 10^{-2} \mu + 2.07\cdot 10^{-2} \sigma + 2.53\cdot 10^{-1} P + \text{error} \label{anispace_Rel_eq}
 \begin{tabular}{l c c r r r} \hline\noalign{\smallskip} $R_\varepsilon^\text{l}(\sigma_x = 0.015\,\text{MPa}) =$ &95\,\% CI & SS/SS$_\text{tot}$ & $p$ & range & fraction\\ \noalign{\smallskip}\hline\noalign{\bigskip} $9.53\cdot 10^{-1}$ & $\left[8.90\cdot 10^{-1} \quad 1.02\right]$ & & $0.000$&&\\ $-9.04\cdot 10^{-2} \mu$ & $\left[-1.32\cdot 10^{-1} \quad -4.89\cdot 10^{-2}\right]$ & $0.107$ & $0.000$ & $1.37\cdot 10^{-1}$ & $0.277$\\ $+2.07\cdot 10^{-2} \sigma$ & $\left[-9.77\cdot 10^{-2} \quad 1.39\cdot 10^{-1}\right]$ & $0.001$ & $0.729$ & $1.07\cdot 10^{-2}$ & $0.022$\\ $+2.53\cdot 10^{-1} P$ & $\left[1.90\cdot 10^{-1} \quad 3.15\cdot 10^{-1}\right]$ & $0.371$ & $0.000$ & $2.49\cdot 10^{-1}$ & $0.503$\\ $+\text{error}$ & & $0.521$ & &&\\ \noalign{\smallskip}\hline\noalign{\smallskip} $n = 95$, $R_a^2 = 0.484$ & \multicolumn{5}{c}{min: $8.37\cdot 10^{-1}$, mean: $1.01$, median: $9.94\cdot 10^{-1}$, max: $1.33$}\\ \end{tabular}
 R_\varepsilon^\text{r}(\sigma_x = 0.015\,\text{MPa}) = 1.47 -1.97\cdot 10^{-1} \mu -3.34\cdot 10^{-2} \sigma + 3.07\cdot 10^{-1} P + \text{error} \label{anispace_Rer_eq}
 \begin{tabular}{l c c r r r} \hline\noalign{\smallskip} $R_\varepsilon^\text{r}(\sigma_x = 0.015\,\text{MPa}) =$ &95\,\% CI & SS/SS$_\text{tot}$ & $p$ & range & fraction\\ \noalign{\smallskip}\hline\noalign{\bigskip} $1.47$ & $\left[1.33 \quad 1.60\right]$ & & $0.000$&&\\ $-1.97\cdot 10^{-1} \mu$ & $\left[-2.86\cdot 10^{-1} \quad -1.08\cdot 10^{-1}\right]$ & $0.148$ & $0.000$ & $2.99\cdot 10^{-1}$ & $0.312$\\ $-3.34\cdot 10^{-2} \sigma$ & $\left[-2.87\cdot 10^{-1} \quad 2.21\cdot 10^{-1}\right]$ & $0.001$ & $0.795$ & $1.73\cdot 10^{-2}$ & $0.018$\\ $+3.07\cdot 10^{-1} P$ & $\left[1.73\cdot 10^{-1} \quad 4.40\cdot 10^{-1}\right]$ & $0.158$ & $0.000$ & $3.02\cdot 10^{-1}$ & $0.314$\\ $+\text{error}$ & & $0.694$ & &&\\ \noalign{\smallskip}\hline\noalign{\smallskip} $n = 95$, $R_a^2 = 0.306$ & \multicolumn{5}{c}{min: $1.09$, mean: $1.45$, median: $1.39$, max: $2.05$}\\ \end{tabular}
 \lambda_L^\text{l}(\sigma_x = 0.015\,\text{MPa}) = 1.00 -1.12\cdot 10^{-3} \mu -9.52\cdot 10^{-4} \sigma + 1.71\cdot 10^{-3} P + \text{error} \label{anispace_dLl_eq}
 \begin{tabular}{l c c r r r} \hline\noalign{\smallskip} $\lambda_L^\text{l}(\sigma_x = 0.015\,\text{MPa}) =$ &95\,\% CI & SS/SS$_\text{tot}$ & $p$ & range & fraction\\ \noalign{\smallskip}\hline\noalign{\bigskip} $1.00$ & $\left[1.00 \quad 1.00\right]$ & & $0.000$&&\\ $-1.12\cdot 10^{-3} \mu$ & $\left[-1.29\cdot 10^{-3} \quad -9.48\cdot 10^{-4}\right]$ & $0.377$ & $0.000$ & $1.70\cdot 10^{-3}$ & $0.454$\\ $-9.52\cdot 10^{-4} \sigma$ & $\left[-1.43\cdot 10^{-3} \quad -4.71\cdot 10^{-4}\right]$ & $0.034$ & $0.000$ & $4.93\cdot 10^{-4}$ & $0.132$\\ $+1.71\cdot 10^{-3} P$ & $\left[1.46\cdot 10^{-3} \quad 1.96\cdot 10^{-3}\right]$ & $0.391$ & $0.000$ & $1.68\cdot 10^{-3}$ & $0.451$\\ $+\text{error}$ & & $0.198$ & &&\\ \noalign{\smallskip}\hline\noalign{\smallskip} $n = 95$, $R_a^2 = 0.811$ & \multicolumn{5}{c}{min: $9.99\cdot 10^{-1}$, mean: $1.00$, median: $1.00$, max: $1.00$}\\ \end{tabular}
 \lambda_L^\text{r}(\sigma_x = 0.015\,\text{MPa}) = 1.00 -9.63\cdot 10^{-4} \mu -9.24\cdot 10^{-4} \sigma + 1.51\cdot 10^{-3} P + \text{error} \label{anispace_dLr_eq}
 \begin{tabular}{l c c r r r} \hline\noalign{\smallskip} $\lambda_L^\text{r}(\sigma_x = 0.015\,\text{MPa}) =$ &95\,\% CI & SS/SS$_\text{tot}$ & $p$ & range & fraction\\ \noalign{\smallskip}\hline\noalign{\bigskip} $1.00$ & $\left[1.00 \quad 1.00\right]$ & & $0.000$&&\\ $-9.63\cdot 10^{-4} \mu$ & $\left[-1.15\cdot 10^{-3} \quad -7.75\cdot 10^{-4}\right]$ & $0.325$ & $0.000$ & $1.46\cdot 10^{-3}$ & $0.452$\\ $-9.24\cdot 10^{-4} \sigma$ & $\left[-1.46\cdot 10^{-3} \quad -3.89\cdot 10^{-4}\right]$ & $0.037$ & $0.001$ & $4.78\cdot 10^{-4}$ & $0.148$\\ $+1.51\cdot 10^{-3} P$ & $\left[1.22\cdot 10^{-3} \quad 1.79\cdot 10^{-3}\right]$ & $0.353$ & $0.000$ & $1.48\cdot 10^{-3}$ & $0.459$\\ $+\text{error}$ & & $0.285$ & &&\\ \noalign{\smallskip}\hline\noalign{\smallskip} $n = 95$, $R_a^2 = 0.727$ & \multicolumn{5}{c}{min: $1.00$, mean: $1.00$, median: $1.00$, max: $1.00$}\\ \end{tabular}
 \Deltaup \kappa (\sigma_x = 0.015\,\text{MPa}) = -4.34\cdot 10^{-1} + 5.14\cdot 10^{-2} \mu + 3.71\cdot 10^{-2} \sigma + 5.89\cdot 10^{-2} P + \text{error} \label{anispace_dk_eq}
 \begin{tabular}{l c c r r r} \hline\noalign{\smallskip} $\Deltaup \kappa (\sigma_x = 0.015\,\text{MPa}) =$ &95\,\% CI & SS/SS$_\text{tot}$ & $p$ & range & fraction\\ \noalign{\smallskip}\hline\noalign{\bigskip} $-4.34\cdot 10^{-1}$ & $\left[-4.85\cdot 10^{-1} \quad -3.83\cdot 10^{-1}\right]$ & & $0.000$&&\\ $+5.14\cdot 10^{-2} \mu$ & $\left[1.77\cdot 10^{-2} \quad 8.52\cdot 10^{-2}\right]$ & $0.087$ & $0.003$ & $7.81\cdot 10^{-2}$ & $0.183$\\ $+3.71\cdot 10^{-2} \sigma$ & $\left[-5.90\cdot 10^{-2} \quad 1.33\cdot 10^{-1}\right]$ & $0.006$ & $0.445$ & $1.92\cdot 10^{-2}$ & $0.045$\\ $+5.89\cdot 10^{-2} P$ & $\left[8.27\cdot 10^{-3} \quad 1.10\cdot 10^{-1}\right]$ & $0.050$ & $0.023$ & $5.80\cdot 10^{-2}$ & $0.136$\\ $+\text{error}$ & & $0.858$ & &&\\ \noalign{\smallskip}\hline\noalign{\smallskip} \multicolumn{6}{l}{$n = 95$, $R_a^2 = 0.101$, min: $-4.57\cdot 10^{-1}$, mean: $-3.52\cdot 10^{-1}$, median: $-3.71\cdot 10^{-1}$, max: $-2.94\cdot 10^{-2}$}\\ \end{tabular}
 \kappa_\varepsilon^\text{l}(\sigma_x = 0.015\,\text{MPa}) = 6.36\cdot 10^{-1} -3.17\cdot 10^{-1} \mu -1.66\cdot 10^{-1} \sigma + 5.21\cdot 10^{-2} P + \text{error} \label{anispace_kel_eq}
 \begin{tabular}{l c c r r r} \hline\noalign{\smallskip} $\kappa_\varepsilon^\text{l}(\sigma_x = 0.015\,\text{MPa}) =$ &95\,\% CI & SS/SS$_\text{tot}$ & $p$ & range & fraction\\ \noalign{\smallskip}\hline\noalign{\bigskip} $6.36\cdot 10^{-1}$ & $\left[5.67\cdot 10^{-1} \quad 7.05\cdot 10^{-1}\right]$ & & $0.000$&&\\ $-3.17\cdot 10^{-1} \mu$ & $\left[-3.62\cdot 10^{-1} \quad -2.72\cdot 10^{-1}\right]$ & $0.658$ & $0.000$ & $4.81\cdot 10^{-1}$ & $0.497$\\ $-1.66\cdot 10^{-1} \sigma$ & $\left[-2.96\cdot 10^{-1} \quad -3.66\cdot 10^{-2}\right]$ & $0.022$ & $0.013$ & $8.59\cdot 10^{-2}$ & $0.089$\\ $+5.21\cdot 10^{-2} P$ & $\left[-1.62\cdot 10^{-2} \quad 1.20\cdot 10^{-1}\right]$ & $0.008$ & $0.133$ & $5.13\cdot 10^{-2}$ & $0.053$\\ $+\text{error}$ & & $0.312$ & &&\\ \noalign{\smallskip}\hline\noalign{\smallskip} $n = 95$, $R_a^2 = 0.682$ & \multicolumn{5}{c}{min: $7.15\cdot 10^{-2}$, mean: $3.61\cdot 10^{-1}$, median: $3.44\cdot 10^{-1}$, max: $1.04$}\\ \end{tabular}
 \kappa_\varepsilon^\text{r}(\sigma_x = 0.015\,\text{MPa}) = 6.39\cdot 10^{-1} -3.56\cdot 10^{-1} \mu -1.52\cdot 10^{-1} \sigma -3.33\cdot 10^{-2} P + \text{error} \label{anispace_ker_eq}
 \begin{tabular}{l c c r r r} \hline\noalign{\smallskip} $\kappa_\varepsilon^\text{r}(\sigma_x = 0.015\,\text{MPa}) =$ &95\,\% CI & SS/SS$_\text{tot}$ & $p$ & range & fraction\\ \noalign{\smallskip}\hline\noalign{\bigskip} $6.39\cdot 10^{-1}$ & $\left[5.47\cdot 10^{-1} \quad 7.31\cdot 10^{-1}\right]$ & & $0.000$&&\\ $-3.56\cdot 10^{-1} \mu$ & $\left[-4.17\cdot 10^{-1} \quad -2.96\cdot 10^{-1}\right]$ & $0.590$ & $0.000$ & $5.41\cdot 10^{-1}$ & $0.496$\\ $-1.52\cdot 10^{-1} \sigma$ & $\left[-3.25\cdot 10^{-1} \quad 2.11\cdot 10^{-2}\right]$ & $0.013$ & $0.084$ & $7.86\cdot 10^{-2}$ & $0.072$\\ $-3.33\cdot 10^{-2} P$ & $\left[-1.25\cdot 10^{-1} \quad 5.79\cdot 10^{-2}\right]$ & $0.002$ & $0.470$ & $3.28\cdot 10^{-2}$ & $0.030$\\ $+\text{error}$ & & $0.395$ & &&\\ \noalign{\smallskip}\hline\noalign{\smallskip} $n = 95$, $R_a^2 = 0.589$ & \multicolumn{5}{c}{min: $5.06\cdot 10^{-2}$, mean: $2.94\cdot 10^{-1}$, median: $2.50\cdot 10^{-1}$, max: $1.14$}\\ \end{tabular}
 \frac{l}{L}(\sigma_x = 0.015\,\text{MPa}) = 8.17\cdot 10^{-1} -4.05\cdot 10^{-1} \mu -5.64\cdot 10^{-2} \sigma + 3.63\cdot 10^{-2} P + \text{error} \label{anispace_lL_eq}
 \begin{tabular}{l c c r r r} \hline\noalign{\smallskip} $\frac{l}{L}(\sigma_x = 0.015\,\text{MPa}) =$ &95\,\% CI & SS/SS$_\text{tot}$ & $p$ & range & fraction\\ \noalign{\smallskip}\hline\noalign{\bigskip} $8.17\cdot 10^{-1}$ & $\left[7.66\cdot 10^{-1} \quad 8.68\cdot 10^{-1}\right]$ & & $0.000$&&\\ $-4.05\cdot 10^{-1} \mu$ & $\left[-4.39\cdot 10^{-1} \quad -3.71\cdot 10^{-1}\right]$ & $0.858$ & $0.000$ & $6.15\cdot 10^{-1}$ & $0.895$\\ $-5.64\cdot 10^{-2} \sigma$ & $\left[-1.52\cdot 10^{-1} \quad 3.95\cdot 10^{-2}\right]$ & $0.002$ & $0.246$ & $2.91\cdot 10^{-2}$ & $0.042$\\ $+3.63\cdot 10^{-2} P$ & $\left[-1.43\cdot 10^{-2} \quad 8.68\cdot 10^{-2}\right]$ & $0.003$ & $0.157$ & $3.57\cdot 10^{-2}$ & $0.052$\\ $+\text{error}$ & & $0.136$ & &&\\ \noalign{\smallskip}\hline\noalign{\smallskip} $n = 95$, $R_a^2 = 0.861$ & \multicolumn{5}{c}{min: $2.44\cdot 10^{-1}$, mean: $4.95\cdot 10^{-1}$, median: $4.36\cdot 10^{-1}$, max: $9.31\cdot 10^{-1}$}\\ \end{tabular}
 \overline{\min l(\sigma)} = 3.05\cdot 10^{-2} + 5.04\cdot 10^{-2} \mu -2.27\cdot 10^{-2} \sigma -3.52\cdot 10^{-2} P + \text{error} \label{anispace_md_eq}
 \begin{tabular}{l c c r r r} \hline\noalign{\smallskip} $\overline{\min l(\sigma)} =$ &95\,\% CI & SS/SS$_\text{tot}$ & $p$ & range & fraction\\ \noalign{\smallskip}\hline\noalign{\bigskip} $3.05\cdot 10^{-2}$ & $\left[7.96\cdot 10^{-4} \quad 6.02\cdot 10^{-2}\right]$ & & $0.044$&&\\ $+5.04\cdot 10^{-2} \mu$ & $\left[3.08\cdot 10^{-2} \quad 6.99\cdot 10^{-2}\right]$ & $0.203$ & $0.000$ & $7.64\cdot 10^{-2}$ & $0.531$\\ $-2.27\cdot 10^{-2} \sigma$ & $\left[-7.86\cdot 10^{-2} \quad 3.32\cdot 10^{-2}\right]$ & $0.005$ & $0.423$ & $1.17\cdot 10^{-2}$ & $0.081$\\ $-3.52\cdot 10^{-2} P$ & $\left[-6.48\cdot 10^{-2} \quad -5.57\cdot 10^{-3}\right]$ & $0.043$ & $0.020$ & $3.47\cdot 10^{-2}$ & $0.241$\\ $+\text{error}$ & & $0.748$ & &&\\ \noalign{\smallskip}\hline\noalign{\smallskip} $n = 100$, $R_a^2 = 0.244$ & \multicolumn{5}{c}{min: $0.00$, mean: $4.62\cdot 10^{-2}$, median: $2.77\cdot 10^{-2}$, max: $1.44\cdot 10^{-1}$}\\ \end{tabular}
 \max \sigma_x = 2.17\cdot 10^{-2} + 2.45\cdot 10^{-3} \mu + 4.46\cdot 10^{-3} \sigma -7.08\cdot 10^{-3} P + \text{error} \label{anispace_msig_eq}
 \begin{tabular}{l c c r r r} \hline\noalign{\smallskip} $\max \sigma_x =$ &95\,\% CI & SS/SS$_\text{tot}$ & $p$ & range & fraction\\ \noalign{\smallskip}\hline\noalign{\bigskip} $2.17\cdot 10^{-2}$ & $\left[2.07\cdot 10^{-2} \quad 2.27\cdot 10^{-2}\right]$ & & $0.000$&&\\ $+2.45\cdot 10^{-3} \mu$ & $\left[1.79\cdot 10^{-3} \quad 3.11\cdot 10^{-3}\right]$ & $0.146$ & $0.000$ & $3.72\cdot 10^{-3}$ & $0.286$\\ $+4.46\cdot 10^{-3} \sigma$ & $\left[2.57\cdot 10^{-3} \quad 6.36\cdot 10^{-3}\right]$ & $0.060$ & $0.000$ & $2.31\cdot 10^{-3}$ & $0.178$\\ $-7.08\cdot 10^{-3} P$ & $\left[-8.08\cdot 10^{-3} \quad -6.07\cdot 10^{-3}\right]$ & $0.533$ & $0.000$ & $6.97\cdot 10^{-3}$ & $0.536$\\ $+\text{error}$ & & $0.261$ & &&\\ \noalign{\smallskip}\hline\noalign{\smallskip} $n = 100$, $R_a^2 = 0.750$ & \multicolumn{5}{c}{min: $1.20\cdot 10^{-2}$, mean: $2.14\cdot 10^{-2}$, median: $2.20\cdot 10^{-2}$, max: $2.50\cdot 10^{-2}$}\\ \end{tabular}
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!