Commit a3d6c6cb by Turnhout, M.C. van

figure update

parent 5c6100ef
 ... ... @@ -124,7 +124,7 @@ for m = 1:numel(mus) 'color', clr(2*m, :), 'linewidth', 2) xlabel('$L_d$\,[mm]') ylabel('$\kappa_z\,[\text{mm}^{-1}]$') figure(8) plot(dl(2:end, 2), kappa(2:end, 4), ... 'color', clr(2*m, :), 'linewidth', 2) ... ... @@ -142,7 +142,7 @@ for m = 1:numel(mus) 'color', clr(2*m, :), 'linewidth', 2) xlabel('$L_d$\,[mm]') ylabel('$\kappa_z\,[\text{mm}^{-1}]$') if m == 5 figure(11) ... ... @@ -181,19 +181,27 @@ for m = 1:numel(mus) xlabel('$x$\,[mm]') ylabel('$y$\,[mm]') zlabel('$z$\,[mm]') axis equal % axis([0 3 0 3]) axis equal tight set(gca, 'view', [24 22]) set(gca, 'view', [90 -1]) figure(12) kl = sqrt(sum(kappa(:, 1:3).^2, 2)); kr = sqrt(sum(kappa(:, 4:6).^2, 2)); plot(dl(2:end, 1), kl(2:end), dl(2:end, 2), kr(2:end), ... [0 4], [1 1]*mean([kl(2:end); kr(2:end)]), ... [0 4], [1/R 1/R], 'linewidth',2) klp = sqrt(sum(kappa(:, 2:3).^2, 2)); krp = sqrt(sum(kappa(:, 5:6).^2, 2)); plot(dl(2:end, 1), kl(2:end), 'b', dl(2:end, 1), klp(2:end), 'b--', ... dl(2:end, 2), kr(2:end), 'g', dl(2:end, 2), krp(2:end), 'g--', ... [0 4], [1 1]*mean([kl(2:end); kr(2:end)]), 'r', ... [0 4], [1 1]*mean([klp(2:end); krp(2:end)]), 'r--', ... [0 4], [1/R 1/R], 'linewidth', 2) xlabel('$L_d$\,[mm]') ylabel('$\kappa\,[\text{mm}^{-1}]$') h = legend('left edge', 'right edge', '$mean \kappa$', '$\kappa_R$'); set(h, 'box', 'off', 'location', 'southeast') h = legend('left 3D', 'left $yz$', 'right 3D', 'right $yz$', ... '$\mean \kappa_{xyz}$', '$\mean \kappa_{yz}$', '$\kappa_R$'); set(h, 'box', 'off', 'location', 'northeast') end ... ... @@ -224,9 +232,20 @@ ylabel('\raisebox{1em}{frequency\,[-]}') % svgprint(3, 'pics/lfmu_fibs') svgprint(5, 'pics/anikappaxl') svgprint(6, 'pics/anikappayl') svgprint(7, 'pics/anikappazl') svgprint(8, 'pics/anikappaxr') svgprint(9, 'pics/anikappayr') svgprint(10, 'pics/anikappazr') % svgprint(5, 'pics/anikappaxl') % svgprint(6, 'pics/anikappayl') % svgprint(7, 'pics/anikappazl') % svgprint(8, 'pics/anikappaxr') % svgprint(9, 'pics/anikappayr') % svgprint(10, 'pics/anikappazr') figure(99) clr = clr(1:2:end,:); colormap(clr); h = colorbar; set(h, 'location', 'southoutside') caxis([90 180]) set(h, 'ticklabels', {'90\,\degree', '100\,\degree', ... '110\,\degree', '120\,\degree', '130\,\degree', '140\,\degree', ... '150\,\degree', '160\,\degree', '170\,\degree', '180\,\degree'}) % svgprint(99, 'pics/aniexamcolorbar') \ No newline at end of file
 ... ... @@ -389,5 +389,5 @@ for the model of equation \ref{mregress} with $y = \Deltaup \kappa$ (table \ref{ \def\svgwidth{0.47\linewidth}\includesvg{pics/anikappazl}}\hfill \subfloat[\label{anikappazl}]{% \def\svgwidth{0.47\linewidth}\includesvg{pics/anikappazr}}\\ \caption{ \label{fig:anikappaxyz}} \caption{The three components of the local curvature vector along the deformed edges of the films in figure \ref{lgmu}. With the left edge on the left, the right edge at the right, and from top to bottom $\kappa_x$, $\kappa_y$, and $\kappa_z$. \label{fig:anikappaxyz}} \end{figure} \ No newline at end of file
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!