Commit e3162f6e authored by Turnhout, M.C. van's avatar Turnhout, M.C. van
Browse files

text & typos

parent d33f1492
......@@ -80,7 +80,7 @@ There are two ways to obtain an Abaqus input file in \tflab: Matlab/hard-coded a
For films that do not deviate too much from the dimensions that Inge used (about 4\,mm long, 1.75\,mm wide), you can have \tflab{} write the Abaqus input file directly without calling Abaqus with a Python script. The number of elements ($20\times10\times2$) is hard-coded for this method.
The benefit of this method is that is \textsl{fast}. We do not need to wrote python scripts and call Abaqus to build the model, and we do not have to parse the input file for the mesh and the node sets.
The benefit of this method is that is \textsl{fast}. We do not need to write python scripts and call Abaqus to build the model, and we do not have to parse the input file for the mesh and the node sets.
This method requires \texttt{param.buildFEM = 'matlab'} (in any permutation of capitalisation imaginable, appendix \ref{matcaps}) and uses \TF{writeFEM} to write the Abaqus input file.
......@@ -155,7 +155,7 @@ file & description & source \\ \noalign{\smallskip}\hline\noalign{\smallskip}
\subsection{Necessary FEM input files}
In order to be able to run our analysis, we need an Abaqus input file, our Fortran scripts, and a (Fortran) file with material properties (table \ref{feminputfiles}). The Fortran files are static (same scripts, always) and are copied from the \tflab-installation directory (i.e.\ the <sub directory \texttt{fortran}) when necessary. The Abaqus input file and the material properties file are film and frame dependent, and are produced by \tflab.
In order to be able to run our analysis, we need an Abaqus input file, our Fortran scripts, and a (Fortran) file with material properties (table \ref{feminputfiles}). The Fortran files are static (same scripts, always) and are copied from the \tflab-installation directory (c.q.\ the sub directory \texttt{fortran}) when necessary. The Abaqus input file and the material properties file are film and frame dependent, and are produced by \tflab.
\subsection{FEM results files}
......
......@@ -3,7 +3,7 @@
$R_\varepsilon^\text{l}(\sigma_x = 0.015\,\text{MPa}) = $ &95\,\% CI & SS/SS$_\text{tot}$ & $p$ & range & fraction\\
\noalign{\smallskip}\hline\noalign{\bigskip}
$9.53\cdot 10^{-1}$ & $\left[8.90\cdot 10^{-1} \quad 1.02\right]$ & & $0.000$&&\\
$-9.04\cdot 10^{-2} \mu$ & $\left[-1.32\cdot 10^{-1} \quad -4.89\cdot 10^{-2}\right]$ & $0.107$ & $0.000$ & $1.37\cdot 10^{-1}$ & $0.277$\\
$-9.04\cdot 10^{-2} \mu$ & $\left[-1.32\cdot 10^{-1} \quad -4.89\cdot 10^{-2}\right]$ & $0.107$ & $0.000$ & $-1.37\cdot 10^{-1}$ & $-0.277$\\
$+2.07\cdot 10^{-2} \sigma$ & $\left[-9.77\cdot 10^{-2} \quad 1.39\cdot 10^{-1}\right]$ & $0.001$ & $0.729$ & $1.07\cdot 10^{-2}$ & $0.022$\\
$+2.53\cdot 10^{-1} P$ & $\left[1.90\cdot 10^{-1} \quad 3.15\cdot 10^{-1}\right]$ & $0.371$ & $0.000$ & $2.49\cdot 10^{-1}$ & $0.503$\\
$+\text{error}$ & & $0.521$ & &&\\
......
......@@ -3,8 +3,8 @@
$R_\varepsilon^\text{r}(\sigma_x = 0.015\,\text{MPa}) = $ &95\,\% CI & SS/SS$_\text{tot}$ & $p$ & range & fraction\\
\noalign{\smallskip}\hline\noalign{\bigskip}
$1.47$ & $\left[1.33 \quad 1.60\right]$ & & $0.000$&&\\
$-1.97\cdot 10^{-1} \mu$ & $\left[-2.86\cdot 10^{-1} \quad -1.08\cdot 10^{-1}\right]$ & $0.148$ & $0.000$ & $2.99\cdot 10^{-1}$ & $0.312$\\
$-3.34\cdot 10^{-2} \sigma$ & $\left[-2.87\cdot 10^{-1} \quad 2.21\cdot 10^{-1}\right]$ & $0.001$ & $0.795$ & $1.73\cdot 10^{-2}$ & $0.018$\\
$-1.97\cdot 10^{-1} \mu$ & $\left[-2.86\cdot 10^{-1} \quad -1.08\cdot 10^{-1}\right]$ & $0.148$ & $0.000$ & $-2.99\cdot 10^{-1}$ & $-0.312$\\
$-3.34\cdot 10^{-2} \sigma$ & $\left[-2.87\cdot 10^{-1} \quad 2.21\cdot 10^{-1}\right]$ & $0.001$ & $0.795$ & $-1.73\cdot 10^{-2}$ & $-0.018$\\
$+3.07\cdot 10^{-1} P$ & $\left[1.73\cdot 10^{-1} \quad 4.40\cdot 10^{-1}\right]$ & $0.158$ & $0.000$ & $3.02\cdot 10^{-1}$ & $0.314$\\
$+\text{error}$ & & $0.694$ & &&\\
\noalign{\smallskip}\hline\noalign{\smallskip}
......
......@@ -3,8 +3,8 @@
$\lambda_L^\text{l}(\sigma_x = 0.015\,\text{MPa}) = $ &95\,\% CI & SS/SS$_\text{tot}$ & $p$ & range & fraction\\
\noalign{\smallskip}\hline\noalign{\bigskip}
$1.00$ & $\left[1.00 \quad 1.00\right]$ & & $0.000$&&\\
$-1.12\cdot 10^{-3} \mu$ & $\left[-1.29\cdot 10^{-3} \quad -9.48\cdot 10^{-4}\right]$ & $0.377$ & $0.000$ & $1.70\cdot 10^{-3}$ & $0.454$\\
$-9.52\cdot 10^{-4} \sigma$ & $\left[-1.43\cdot 10^{-3} \quad -4.71\cdot 10^{-4}\right]$ & $0.034$ & $0.000$ & $4.93\cdot 10^{-4}$ & $0.132$\\
$-1.12\cdot 10^{-3} \mu$ & $\left[-1.29\cdot 10^{-3} \quad -9.48\cdot 10^{-4}\right]$ & $0.377$ & $0.000$ & $-1.70\cdot 10^{-3}$ & $-0.454$\\
$-9.52\cdot 10^{-4} \sigma$ & $\left[-1.43\cdot 10^{-3} \quad -4.71\cdot 10^{-4}\right]$ & $0.034$ & $0.000$ & $-4.93\cdot 10^{-4}$ & $-0.132$\\
$+1.71\cdot 10^{-3} P$ & $\left[1.46\cdot 10^{-3} \quad 1.96\cdot 10^{-3}\right]$ & $0.391$ & $0.000$ & $1.68\cdot 10^{-3}$ & $0.451$\\
$+\text{error}$ & & $0.198$ & &&\\
\noalign{\smallskip}\hline\noalign{\smallskip}
......
......@@ -3,8 +3,8 @@
$\lambda_L^\text{r}(\sigma_x = 0.015\,\text{MPa}) = $ &95\,\% CI & SS/SS$_\text{tot}$ & $p$ & range & fraction\\
\noalign{\smallskip}\hline\noalign{\bigskip}
$1.00$ & $\left[1.00 \quad 1.00\right]$ & & $0.000$&&\\
$-9.63\cdot 10^{-4} \mu$ & $\left[-1.15\cdot 10^{-3} \quad -7.75\cdot 10^{-4}\right]$ & $0.325$ & $0.000$ & $1.46\cdot 10^{-3}$ & $0.452$\\
$-9.24\cdot 10^{-4} \sigma$ & $\left[-1.46\cdot 10^{-3} \quad -3.89\cdot 10^{-4}\right]$ & $0.037$ & $0.001$ & $4.78\cdot 10^{-4}$ & $0.148$\\
$-9.63\cdot 10^{-4} \mu$ & $\left[-1.15\cdot 10^{-3} \quad -7.75\cdot 10^{-4}\right]$ & $0.325$ & $0.000$ & $-1.46\cdot 10^{-3}$ & $-0.452$\\
$-9.24\cdot 10^{-4} \sigma$ & $\left[-1.46\cdot 10^{-3} \quad -3.89\cdot 10^{-4}\right]$ & $0.037$ & $0.001$ & $-4.78\cdot 10^{-4}$ & $-0.148$\\
$+1.51\cdot 10^{-3} P$ & $\left[1.22\cdot 10^{-3} \quad 1.79\cdot 10^{-3}\right]$ & $0.353$ & $0.000$ & $1.48\cdot 10^{-3}$ & $0.459$\\
$+\text{error}$ & & $0.285$ & &&\\
\noalign{\smallskip}\hline\noalign{\smallskip}
......
......@@ -3,8 +3,8 @@
$\kappa_\varepsilon^\text{l}(\sigma_x = 0.015\,\text{MPa}) = $ &95\,\% CI & SS/SS$_\text{tot}$ & $p$ & range & fraction\\
\noalign{\smallskip}\hline\noalign{\bigskip}
$6.36\cdot 10^{-1}$ & $\left[5.67\cdot 10^{-1} \quad 7.05\cdot 10^{-1}\right]$ & & $0.000$&&\\
$-3.17\cdot 10^{-1} \mu$ & $\left[-3.62\cdot 10^{-1} \quad -2.72\cdot 10^{-1}\right]$ & $0.658$ & $0.000$ & $4.81\cdot 10^{-1}$ & $0.497$\\
$-1.66\cdot 10^{-1} \sigma$ & $\left[-2.96\cdot 10^{-1} \quad -3.66\cdot 10^{-2}\right]$ & $0.022$ & $0.013$ & $8.59\cdot 10^{-2}$ & $0.089$\\
$-3.17\cdot 10^{-1} \mu$ & $\left[-3.62\cdot 10^{-1} \quad -2.72\cdot 10^{-1}\right]$ & $0.658$ & $0.000$ & $-4.81\cdot 10^{-1}$ & $-0.497$\\
$-1.66\cdot 10^{-1} \sigma$ & $\left[-2.96\cdot 10^{-1} \quad -3.66\cdot 10^{-2}\right]$ & $0.022$ & $0.013$ & $-8.59\cdot 10^{-2}$ & $-0.089$\\
$+5.21\cdot 10^{-2} P$ & $\left[-1.62\cdot 10^{-2} \quad 1.20\cdot 10^{-1}\right]$ & $0.008$ & $0.133$ & $5.13\cdot 10^{-2}$ & $0.053$\\
$+\text{error}$ & & $0.312$ & &&\\
\noalign{\smallskip}\hline\noalign{\smallskip}
......
......@@ -3,9 +3,9 @@
$\kappa_\varepsilon^\text{r}(\sigma_x = 0.015\,\text{MPa}) = $ &95\,\% CI & SS/SS$_\text{tot}$ & $p$ & range & fraction\\
\noalign{\smallskip}\hline\noalign{\bigskip}
$6.39\cdot 10^{-1}$ & $\left[5.47\cdot 10^{-1} \quad 7.31\cdot 10^{-1}\right]$ & & $0.000$&&\\
$-3.56\cdot 10^{-1} \mu$ & $\left[-4.17\cdot 10^{-1} \quad -2.96\cdot 10^{-1}\right]$ & $0.590$ & $0.000$ & $5.41\cdot 10^{-1}$ & $0.496$\\
$-1.52\cdot 10^{-1} \sigma$ & $\left[-3.25\cdot 10^{-1} \quad 2.11\cdot 10^{-2}\right]$ & $0.013$ & $0.084$ & $7.86\cdot 10^{-2}$ & $0.072$\\
$-3.33\cdot 10^{-2} P$ & $\left[-1.25\cdot 10^{-1} \quad 5.79\cdot 10^{-2}\right]$ & $0.002$ & $0.470$ & $3.28\cdot 10^{-2}$ & $0.030$\\
$-3.56\cdot 10^{-1} \mu$ & $\left[-4.17\cdot 10^{-1} \quad -2.96\cdot 10^{-1}\right]$ & $0.590$ & $0.000$ & $-5.41\cdot 10^{-1}$ & $-0.496$\\
$-1.52\cdot 10^{-1} \sigma$ & $\left[-3.25\cdot 10^{-1} \quad 2.11\cdot 10^{-2}\right]$ & $0.013$ & $0.084$ & $-7.86\cdot 10^{-2}$ & $-0.072$\\
$-3.33\cdot 10^{-2} P$ & $\left[-1.25\cdot 10^{-1} \quad 5.79\cdot 10^{-2}\right]$ & $0.002$ & $0.470$ & $-3.28\cdot 10^{-2}$ & $-0.030$\\
$+\text{error}$ & & $0.395$ & &&\\
\noalign{\smallskip}\hline\noalign{\smallskip}
$n = 95$, $R_a^2 = 0.589$ & \multicolumn{5}{c}{min: $5.06\cdot 10^{-2}$, mean: $2.94\cdot 10^{-1}$, median: $2.50\cdot 10^{-1}$, max: $1.14$}\\
......
......@@ -3,8 +3,8 @@
$\frac{l}{L}(\sigma_x = 0.015\,\text{MPa}) = $ &95\,\% CI & SS/SS$_\text{tot}$ & $p$ & range & fraction\\
\noalign{\smallskip}\hline\noalign{\bigskip}
$8.17\cdot 10^{-1}$ & $\left[7.66\cdot 10^{-1} \quad 8.68\cdot 10^{-1}\right]$ & & $0.000$&&\\
$-4.05\cdot 10^{-1} \mu$ & $\left[-4.39\cdot 10^{-1} \quad -3.71\cdot 10^{-1}\right]$ & $0.858$ & $0.000$ & $6.15\cdot 10^{-1}$ & $0.895$\\
$-5.64\cdot 10^{-2} \sigma$ & $\left[-1.52\cdot 10^{-1} \quad 3.95\cdot 10^{-2}\right]$ & $0.002$ & $0.246$ & $2.91\cdot 10^{-2}$ & $0.042$\\
$-4.05\cdot 10^{-1} \mu$ & $\left[-4.39\cdot 10^{-1} \quad -3.71\cdot 10^{-1}\right]$ & $0.858$ & $0.000$ & $-6.15\cdot 10^{-1}$ & $-0.895$\\
$-5.64\cdot 10^{-2} \sigma$ & $\left[-1.52\cdot 10^{-1} \quad 3.95\cdot 10^{-2}\right]$ & $0.002$ & $0.246$ & $-2.91\cdot 10^{-2}$ & $-0.042$\\
$+3.63\cdot 10^{-2} P$ & $\left[-1.43\cdot 10^{-2} \quad 8.68\cdot 10^{-2}\right]$ & $0.003$ & $0.157$ & $3.57\cdot 10^{-2}$ & $0.052$\\
$+\text{error}$ & & $0.136$ & &&\\
\noalign{\smallskip}\hline\noalign{\smallskip}
......
......@@ -4,8 +4,8 @@ $\overline{\min l(\sigma)} = $ &95\,\% CI & SS/SS$_\text{tot}$ & $p$ & range &
\noalign{\smallskip}\hline\noalign{\bigskip}
$3.05\cdot 10^{-2}$ & $\left[7.96\cdot 10^{-4} \quad 6.02\cdot 10^{-2}\right]$ & & $0.044$&&\\
$+5.04\cdot 10^{-2} \mu$ & $\left[3.08\cdot 10^{-2} \quad 6.99\cdot 10^{-2}\right]$ & $0.203$ & $0.000$ & $7.64\cdot 10^{-2}$ & $0.531$\\
$-2.27\cdot 10^{-2} \sigma$ & $\left[-7.86\cdot 10^{-2} \quad 3.32\cdot 10^{-2}\right]$ & $0.005$ & $0.423$ & $1.17\cdot 10^{-2}$ & $0.081$\\
$-3.52\cdot 10^{-2} P$ & $\left[-6.48\cdot 10^{-2} \quad -5.57\cdot 10^{-3}\right]$ & $0.043$ & $0.020$ & $3.47\cdot 10^{-2}$ & $0.241$\\
$-2.27\cdot 10^{-2} \sigma$ & $\left[-7.86\cdot 10^{-2} \quad 3.32\cdot 10^{-2}\right]$ & $0.005$ & $0.423$ & $-1.17\cdot 10^{-2}$ & $-0.081$\\
$-3.52\cdot 10^{-2} P$ & $\left[-6.48\cdot 10^{-2} \quad -5.57\cdot 10^{-3}\right]$ & $0.043$ & $0.020$ & $-3.47\cdot 10^{-2}$ & $-0.241$\\
$+\text{error}$ & & $0.748$ & &&\\
\noalign{\smallskip}\hline\noalign{\smallskip}
$n = 100$, $R_a^2 = 0.244$ & \multicolumn{5}{c}{min: $0.00$, mean: $4.62\cdot 10^{-2}$, median: $2.77\cdot 10^{-2}$, max: $1.44\cdot 10^{-1}$}\\
......
......@@ -5,7 +5,7 @@ $\max \sigma_x = $ &95\,\% CI & SS/SS$_\text{tot}$ & $p$ & range & fraction\\
$2.17\cdot 10^{-2}$ & $\left[2.07\cdot 10^{-2} \quad 2.27\cdot 10^{-2}\right]$ & & $0.000$&&\\
$+2.45\cdot 10^{-3} \mu$ & $\left[1.79\cdot 10^{-3} \quad 3.11\cdot 10^{-3}\right]$ & $0.146$ & $0.000$ & $3.72\cdot 10^{-3}$ & $0.286$\\
$+4.46\cdot 10^{-3} \sigma$ & $\left[2.57\cdot 10^{-3} \quad 6.36\cdot 10^{-3}\right]$ & $0.060$ & $0.000$ & $2.31\cdot 10^{-3}$ & $0.178$\\
$-7.08\cdot 10^{-3} P$ & $\left[-8.08\cdot 10^{-3} \quad -6.07\cdot 10^{-3}\right]$ & $0.533$ & $0.000$ & $6.97\cdot 10^{-3}$ & $0.536$\\
$-7.08\cdot 10^{-3} P$ & $\left[-8.08\cdot 10^{-3} \quad -6.07\cdot 10^{-3}\right]$ & $0.533$ & $0.000$ & $-6.97\cdot 10^{-3}$ & $-0.536$\\
$+\text{error}$ & & $0.261$ & &&\\
\noalign{\smallskip}\hline\noalign{\smallskip}
$n = 100$, $R_a^2 = 0.750$ & \multicolumn{5}{c}{min: $1.20\cdot 10^{-2}$, mean: $2.14\cdot 10^{-2}$, median: $2.20\cdot 10^{-2}$, max: $2.50\cdot 10^{-2}$}\\
......
......@@ -18,7 +18,7 @@ parameter & description & figure \\
$x$ & coordinates along the width of the film & \ref{imreq}\\
$y$ & coordinates along the length of the film &\ref{imreq}\\
$z$ & eh, yeah (perpendicular to those other two) &\\
PEL-point & Projected-Edge-Length point, formerly known as 'tip-point'. The projected `tips' of the two long edges.& \ref{imanatip}\\
PEL-point & Projected-Edge-Length point, formerly known as `tip-point'. The projected `tips' of the two long edges.& \ref{imanatip}\\
base-point & The base of the two edges, the film edge attachment points. & \ref{imanatip}\\
$L$ & Undeformed (projected) film length, and (thus) the total length of curved films. Note that by defining those two lengths to be equal, we assume that cell traction does not shorten the film enough to care about. & \ref{imanalw} \\
$w$ & Undeformed (projected) film width, calculated from the base- and PEL-points.& \ref{imanalw} \\
......@@ -73,9 +73,9 @@ The values should not be "quoted", and valid column separators are tabs, spaces,
\hline\noalign{\smallskip}
& format & reason \\
\noalign{\smallskip}\hline\noalign{\bigskip}
wrong & \texttt{"1.618", "2.718", "3"} & quoted\\
wrong & \texttt{1.618; 2.718; 3;} & wrong separator \\
wrong & \texttt{1,618 2,718 3} & wrong decimal operator \\
{\color{red}wrong} & \texttt{{\color{red}"}1.618{\color{red}"}, {\color{red}"}2.718{\color{red}"}, {\color{red}"}3{\color{red}"}} & quoted\\
{\color{red}wrong} & \texttt{1.618{\color{red};} 2.718{\color{red};} 3{\color{red};}} & wrong separator \\
{\color{red}wrong} & \texttt{1{\color{red},}618 2{\color{red},}718 3} & wrong decimal operator \\
correct& \texttt{1.618~~~~2.718~~~~3} & unquoted, separated by tabs \\
correct& \texttt{1.618 2.718 3} & unquoted, separated by space \\
correct& \texttt{1.618, 2.718, 3} & unquoted, separated by commas \\
......@@ -116,7 +116,7 @@ For a curved film, we can write (figure \ref{figcurllnR}):
\end{equation}
With $\varphi$ the fraction of the full circle of radius $R$ that the curled film manages to cover, or the angle that is `swept' by curving; $L$ the total (uncurled) film length; and $R$ the radius of curvature.
As long as $\varphi < \frac{\piup}{2}$, or as long as the film curves no further than a quarter circle, the projected film length $l$ can be calculated from $\varphi$:
As long as $\varphi < \frac{\piup}{2}$, or as long as the film curves no further than a quarter circle, the projected film length $l$ must be calculated from $\varphi$:
\begin{equation}
l = R \sin \varphi
\end{equation}
......@@ -165,7 +165,7 @@ Please be aware that these (angle) definitions are different from what Inge \cit
\noindent Actin fibre orientations $\phi$ are defined positive in the counter clock-wise direction with $\phi = 0$ for the positive $\vec{x}$-axis (figures \ref{fibdefdef}-\ref{fibdefhist}).
The FEM requires a fibre fraction for 30 equidistant orientations $\frac{\piup}{60} \leq \phi\,\text{[rad]} \leq \frac{59\piup}{60}$: basically the bin centres and (normalised) bin counts of a 30-bin histogram of the angle values (figure \ref{fibdef30}). Normalised, because the sum of the 30 fibre fraction needs to be 1.\\
The FEM requires a fibre fraction for 30 equidistant orientations $\frac{\piup}{60} \leq \phi\,\text{[rad]} \leq \frac{59\piup}{60}$: basically the bin centres and (normalised) bin counts of a 30-bin histogram of the angle values (figure \ref{fibdef30}). Normalised, because the sum of the 30 fibre fractions needs to be 1.\\
\noindent If you opt for an isotropic analysis (\param{fibdef} = \texttt{'iso'}, section \ref{actdef}), \tflab{} will write 30 fibre fractions of $\frac{1}{30}$.
......@@ -175,7 +175,5 @@ If you have \fiblab{} installed (\tflab{} was made \fiblab-compatible, of course
\begin{equation}
c(\phi ) = \frac{1 - P}{N_\text{bin}} + P\frac{\eu^{-\frac{\left(\phi - \mu\right)^2}{2\sigma^2}}}{\sqrt{2\piup\sigma^2}} \label{cnorm}
\end{equation}
where $c(\phi )$ is the histogram bin count for the bin with centre $\phi$, and $N_\text{bin} = 180$ the number of histogram bins \cite{fiblab2018,Haaften2018}.
\tflab{} then calls \fiblab{} to evaluate equation \ref{cnorm} with the estimated parameters $\left[\mu, \sigma, P\right]$, $N_\text{bin} = 30$, and 30 histogram bin centres for $\phi$ in order to generate the 30 fibre fractions for the FEM (figure \ref{fibdef30}, blue).
where $c(\phi )$ is the histogram bin count for the bin with centre $\phi$, and $N_\text{bin} = 180$ the number of histogram bins \cite{fiblab2018,Haaften2018}. \tflab{} then calls \fiblab{} to evaluate equation \ref{cnorm} with the estimated parameters $\left[\mu, \sigma, P\right]$ and $N_\text{bin} = 30$ histogram bin centres for $\phi$ in order to generate the 30 fibre fractions for the FEM (figure \ref{fibdef30}, blue).
......@@ -7,7 +7,7 @@ SINCE the ancients (as we are told by \textnormal{Pappus}), made great account o
\section{Origins \& honour due}
The `Thin Film methods' was developed in the lab of Patrick Alford and comes in many forms \cite{Alford2010}. The specific thin film method that is the subject of \tflab\ is described by Grosberg \textsl{et al.} \cite{Grosberg2011} and comprises of `biohybrid constructs' of engineered cells or tissues on an `elastomeric thin film'.
The `Thin Film method' was developed in the lab of Patrick Alford and comes in many forms \cite{Alford2010}. The specific thin film method that is the subject of \tflab\ is described by Grosberg \textsl{et al.} \cite{Grosberg2011} and comprises of `biohybrid constructs' of engineered cells or tissues on an `elastomeric thin film'.
One of the purposes of these constructs is to measure (cell) contractility. When cells that are growing on the thin film contract, the film will curl. The amount of curling, or the curvature of the film, is a quantitative measure for the contraction forces exerted by the cells on this film. With this specific thin film method, films curl `upwards' in the $\vec{z}$-direction and film `curvature' is assessed from a projection of the film in the $\vec{x}\vec{y}$-plane \cite{Grosberg2011}.\\
......
This diff is collapsed.
......@@ -57,7 +57,7 @@ iFEM & \TF{estsigmax} &\\
When all necessary information has been added to the \texttt{param}-structure, it can be fed to \TF{estsigmax} which will estimate the experimental cell stress with iFEM (section \ref{sectfestsigmax}).
\begin{table}[b!]
\begin{table}[p!]
\caption{A brief look under the hood of \TF{prepexp} and \TF{estsigmax}. \href{https://en.wikipedia.org/wiki/Unix_philosophy}{Yes}, there is a \textsl{very} good reason for all those tiny separate scripts.\label{hoodtable}}
\begin{tabularx}{\linewidth}{l X}
\hline\noalign{\smallskip}
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment